miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus.
نویسندگان
چکیده
Biosynthesis in vertebrates of long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids requires the catalysis by fatty acyl desaturases (Fads). A vertebrate Fad with Δ4 activity catalyzing the direct conversion of 22:5n-3 to DHA was discovered in the marine teleost rabbitfish Siganus canaliculatus. Recent studies in vertebrates have shown that miRNAs may participate in the regulation of lipid metabolism at post-transcription level. However, their roles in LC-PUFA biosynthesis were not known. In the present study, in silico analysis predicts that the rabbitfish Δ4 Fad may be a target of miR-17 and thus we cloned miR-17, which is located at the forepart of the miR-17-92 cluster. Dual luciferase reporter assays demonstrated that miR-17 targeted the 3'UTR of Δ4 Fad directly. Furthermore, the expression level of miR-17 displayed an inverse pattern with that of Δ4 Fad mRNA in gill, liver and eyes, and also the Δ4 Fad protein quantity in rabbitfish liver. Incubation of rabbitfish primary hepatocytes with linoleic acid (LA; 18:2n-6), α-linolenic acid (LNA; 18:3n-3), EPA or DHA showed differential effects on miR-17, Δ4 Fad and Δ6/Δ5 Fad expression. LNA promoted the expression of miR-17 and Δ6/Δ5 Fad, but suppressed the expression of Δ4 Fad. In contrast, LA and EPA decreased the expression of miR-17 and Δ6/Δ5 Fad, but had no effect on Δ4 Fad. However, all the above were down-regulated by DHA. These data indicate that miR-17 was involved in the regulation of LC-PUFA biosynthesis in rabbitfish liver by targeting Δ4 Fad.
منابع مشابه
The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus
As the first marine teleost demonstrated to have the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, rabbitfish Siganus canaliculatus provides a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. Here the potential roles of miR-33 in such regulation were investigated. The miR-33 gene was identified within in...
متن کاملCloning, Functional Characterization and Nutritional Regulation of Δ6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the he...
متن کاملHepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understa...
متن کاملLong-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.
Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine tele...
متن کاملLong chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity.
Solea senegalensis is an unusual marine teleost as it has very low dietary requirement for long-chain polyunsaturated fatty acids (LC-PUFA) during early development. Aquaculture is rapidly becoming the main source of health-beneficial fish products for human consumption. This, associated with limited supply of LC-PUFA-rich ingredients for fish feeds, render S. senegalensis a highly interesting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1841 7 شماره
صفحات -
تاریخ انتشار 2014